3.4.84 \(\int \frac {\sqrt {1-c^2 x^2}}{(a+b \arcsin (c x))^2} \, dx\) [384]

3.4.84.1 Optimal result
3.4.84.2 Mathematica [A] (verified)
3.4.84.3 Rubi [A] (verified)
3.4.84.4 Maple [A] (verified)
3.4.84.5 Fricas [F]
3.4.84.6 Sympy [F]
3.4.84.7 Maxima [F]
3.4.84.8 Giac [B] (verification not implemented)
3.4.84.9 Mupad [F(-1)]

3.4.84.1 Optimal result

Integrand size = 25, antiderivative size = 86 \[ \int \frac {\sqrt {1-c^2 x^2}}{(a+b \arcsin (c x))^2} \, dx=-\frac {1-c^2 x^2}{b c (a+b \arcsin (c x))}+\frac {\operatorname {CosIntegral}\left (\frac {2 (a+b \arcsin (c x))}{b}\right ) \sin \left (\frac {2 a}{b}\right )}{b^2 c}-\frac {\cos \left (\frac {2 a}{b}\right ) \text {Si}\left (\frac {2 (a+b \arcsin (c x))}{b}\right )}{b^2 c} \]

output
(c^2*x^2-1)/b/c/(a+b*arcsin(c*x))-cos(2*a/b)*Si(2*(a+b*arcsin(c*x))/b)/b^2 
/c+Ci(2*(a+b*arcsin(c*x))/b)*sin(2*a/b)/b^2/c
 
3.4.84.2 Mathematica [A] (verified)

Time = 0.18 (sec) , antiderivative size = 72, normalized size of antiderivative = 0.84 \[ \int \frac {\sqrt {1-c^2 x^2}}{(a+b \arcsin (c x))^2} \, dx=\frac {\frac {b \left (-1+c^2 x^2\right )}{a+b \arcsin (c x)}+\operatorname {CosIntegral}\left (2 \left (\frac {a}{b}+\arcsin (c x)\right )\right ) \sin \left (\frac {2 a}{b}\right )-\cos \left (\frac {2 a}{b}\right ) \text {Si}\left (2 \left (\frac {a}{b}+\arcsin (c x)\right )\right )}{b^2 c} \]

input
Integrate[Sqrt[1 - c^2*x^2]/(a + b*ArcSin[c*x])^2,x]
 
output
((b*(-1 + c^2*x^2))/(a + b*ArcSin[c*x]) + CosIntegral[2*(a/b + ArcSin[c*x] 
)]*Sin[(2*a)/b] - Cos[(2*a)/b]*SinIntegral[2*(a/b + ArcSin[c*x])])/(b^2*c)
 
3.4.84.3 Rubi [A] (verified)

Time = 0.59 (sec) , antiderivative size = 83, normalized size of antiderivative = 0.97, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.440, Rules used = {5166, 5146, 25, 4906, 27, 3042, 3784, 25, 3042, 3780, 3783}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {1-c^2 x^2}}{(a+b \arcsin (c x))^2} \, dx\)

\(\Big \downarrow \) 5166

\(\displaystyle -\frac {2 c \int \frac {x}{a+b \arcsin (c x)}dx}{b}-\frac {1-c^2 x^2}{b c (a+b \arcsin (c x))}\)

\(\Big \downarrow \) 5146

\(\displaystyle -\frac {2 \int -\frac {\cos \left (\frac {a}{b}-\frac {a+b \arcsin (c x)}{b}\right ) \sin \left (\frac {a}{b}-\frac {a+b \arcsin (c x)}{b}\right )}{a+b \arcsin (c x)}d(a+b \arcsin (c x))}{b^2 c}-\frac {1-c^2 x^2}{b c (a+b \arcsin (c x))}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {2 \int \frac {\cos \left (\frac {a}{b}-\frac {a+b \arcsin (c x)}{b}\right ) \sin \left (\frac {a}{b}-\frac {a+b \arcsin (c x)}{b}\right )}{a+b \arcsin (c x)}d(a+b \arcsin (c x))}{b^2 c}-\frac {1-c^2 x^2}{b c (a+b \arcsin (c x))}\)

\(\Big \downarrow \) 4906

\(\displaystyle \frac {2 \int \frac {\sin \left (\frac {2 a}{b}-\frac {2 (a+b \arcsin (c x))}{b}\right )}{2 (a+b \arcsin (c x))}d(a+b \arcsin (c x))}{b^2 c}-\frac {1-c^2 x^2}{b c (a+b \arcsin (c x))}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {\sin \left (\frac {2 a}{b}-\frac {2 (a+b \arcsin (c x))}{b}\right )}{a+b \arcsin (c x)}d(a+b \arcsin (c x))}{b^2 c}-\frac {1-c^2 x^2}{b c (a+b \arcsin (c x))}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\sin \left (\frac {2 a}{b}-\frac {2 (a+b \arcsin (c x))}{b}\right )}{a+b \arcsin (c x)}d(a+b \arcsin (c x))}{b^2 c}-\frac {1-c^2 x^2}{b c (a+b \arcsin (c x))}\)

\(\Big \downarrow \) 3784

\(\displaystyle -\frac {-\sin \left (\frac {2 a}{b}\right ) \int \frac {\cos \left (\frac {2 (a+b \arcsin (c x))}{b}\right )}{a+b \arcsin (c x)}d(a+b \arcsin (c x))-\cos \left (\frac {2 a}{b}\right ) \int -\frac {\sin \left (\frac {2 (a+b \arcsin (c x))}{b}\right )}{a+b \arcsin (c x)}d(a+b \arcsin (c x))}{b^2 c}-\frac {1-c^2 x^2}{b c (a+b \arcsin (c x))}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\cos \left (\frac {2 a}{b}\right ) \int \frac {\sin \left (\frac {2 (a+b \arcsin (c x))}{b}\right )}{a+b \arcsin (c x)}d(a+b \arcsin (c x))-\sin \left (\frac {2 a}{b}\right ) \int \frac {\cos \left (\frac {2 (a+b \arcsin (c x))}{b}\right )}{a+b \arcsin (c x)}d(a+b \arcsin (c x))}{b^2 c}-\frac {1-c^2 x^2}{b c (a+b \arcsin (c x))}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\cos \left (\frac {2 a}{b}\right ) \int \frac {\sin \left (\frac {2 (a+b \arcsin (c x))}{b}\right )}{a+b \arcsin (c x)}d(a+b \arcsin (c x))-\sin \left (\frac {2 a}{b}\right ) \int \frac {\sin \left (\frac {2 (a+b \arcsin (c x))}{b}+\frac {\pi }{2}\right )}{a+b \arcsin (c x)}d(a+b \arcsin (c x))}{b^2 c}-\frac {1-c^2 x^2}{b c (a+b \arcsin (c x))}\)

\(\Big \downarrow \) 3780

\(\displaystyle -\frac {\cos \left (\frac {2 a}{b}\right ) \text {Si}\left (\frac {2 (a+b \arcsin (c x))}{b}\right )-\sin \left (\frac {2 a}{b}\right ) \int \frac {\sin \left (\frac {2 (a+b \arcsin (c x))}{b}+\frac {\pi }{2}\right )}{a+b \arcsin (c x)}d(a+b \arcsin (c x))}{b^2 c}-\frac {1-c^2 x^2}{b c (a+b \arcsin (c x))}\)

\(\Big \downarrow \) 3783

\(\displaystyle -\frac {\cos \left (\frac {2 a}{b}\right ) \text {Si}\left (\frac {2 (a+b \arcsin (c x))}{b}\right )-\sin \left (\frac {2 a}{b}\right ) \operatorname {CosIntegral}\left (\frac {2 (a+b \arcsin (c x))}{b}\right )}{b^2 c}-\frac {1-c^2 x^2}{b c (a+b \arcsin (c x))}\)

input
Int[Sqrt[1 - c^2*x^2]/(a + b*ArcSin[c*x])^2,x]
 
output
-((1 - c^2*x^2)/(b*c*(a + b*ArcSin[c*x]))) - (-(CosIntegral[(2*(a + b*ArcS 
in[c*x]))/b]*Sin[(2*a)/b]) + Cos[(2*a)/b]*SinIntegral[(2*(a + b*ArcSin[c*x 
]))/b])/(b^2*c)
 

3.4.84.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3780
Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[SinInte 
gral[e + f*x]/d, x] /; FreeQ[{c, d, e, f}, x] && EqQ[d*e - c*f, 0]
 

rule 3783
Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CosInte 
gral[e - Pi/2 + f*x]/d, x] /; FreeQ[{c, d, e, f}, x] && EqQ[d*(e - Pi/2) - 
c*f, 0]
 

rule 3784
Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[Cos[(d* 
e - c*f)/d]   Int[Sin[c*(f/d) + f*x]/(c + d*x), x], x] + Simp[Sin[(d*e - c* 
f)/d]   Int[Cos[c*(f/d) + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f}, x] 
&& NeQ[d*e - c*f, 0]
 

rule 4906
Int[Cos[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sin[(a_.) + (b 
_.)*(x_)]^(n_.), x_Symbol] :> Int[ExpandTrigReduce[(c + d*x)^m, Sin[a + b*x 
]^n*Cos[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && IG 
tQ[p, 0]
 

rule 5146
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[1 
/(b*c^(m + 1))   Subst[Int[x^n*Sin[-a/b + x/b]^m*Cos[-a/b + x/b], x], x, a 
+ b*ArcSin[c*x]], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[m, 0]
 

rule 5166
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*((d_) + (e_.)*(x_)^2)^(p_.), x_ 
Symbol] :> Simp[Sqrt[1 - c^2*x^2]*(d + e*x^2)^p*((a + b*ArcSin[c*x])^(n + 1 
)/(b*c*(n + 1))), x] + Simp[c*((2*p + 1)/(b*(n + 1)))*Simp[(d + e*x^2)^p/(1 
 - c^2*x^2)^p]   Int[x*(1 - c^2*x^2)^(p - 1/2)*(a + b*ArcSin[c*x])^(n + 1), 
 x], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && LtQ[n, -1]
 
3.4.84.4 Maple [A] (verified)

Time = 0.12 (sec) , antiderivative size = 134, normalized size of antiderivative = 1.56

method result size
default \(-\frac {2 \arcsin \left (c x \right ) \operatorname {Si}\left (2 \arcsin \left (c x \right )+\frac {2 a}{b}\right ) \cos \left (\frac {2 a}{b}\right ) b -2 \arcsin \left (c x \right ) \operatorname {Ci}\left (2 \arcsin \left (c x \right )+\frac {2 a}{b}\right ) \sin \left (\frac {2 a}{b}\right ) b +2 \,\operatorname {Si}\left (2 \arcsin \left (c x \right )+\frac {2 a}{b}\right ) \cos \left (\frac {2 a}{b}\right ) a -2 \,\operatorname {Ci}\left (2 \arcsin \left (c x \right )+\frac {2 a}{b}\right ) \sin \left (\frac {2 a}{b}\right ) a +\cos \left (2 \arcsin \left (c x \right )\right ) b +b}{2 c \left (a +b \arcsin \left (c x \right )\right ) b^{2}}\) \(134\)

input
int((-c^2*x^2+1)^(1/2)/(a+b*arcsin(c*x))^2,x,method=_RETURNVERBOSE)
 
output
-1/2/c*(2*arcsin(c*x)*Si(2*arcsin(c*x)+2*a/b)*cos(2*a/b)*b-2*arcsin(c*x)*C 
i(2*arcsin(c*x)+2*a/b)*sin(2*a/b)*b+2*Si(2*arcsin(c*x)+2*a/b)*cos(2*a/b)*a 
-2*Ci(2*arcsin(c*x)+2*a/b)*sin(2*a/b)*a+cos(2*arcsin(c*x))*b+b)/(a+b*arcsi 
n(c*x))/b^2
 
3.4.84.5 Fricas [F]

\[ \int \frac {\sqrt {1-c^2 x^2}}{(a+b \arcsin (c x))^2} \, dx=\int { \frac {\sqrt {-c^{2} x^{2} + 1}}{{\left (b \arcsin \left (c x\right ) + a\right )}^{2}} \,d x } \]

input
integrate((-c^2*x^2+1)^(1/2)/(a+b*arcsin(c*x))^2,x, algorithm="fricas")
 
output
integral(sqrt(-c^2*x^2 + 1)/(b^2*arcsin(c*x)^2 + 2*a*b*arcsin(c*x) + a^2), 
 x)
 
3.4.84.6 Sympy [F]

\[ \int \frac {\sqrt {1-c^2 x^2}}{(a+b \arcsin (c x))^2} \, dx=\int \frac {\sqrt {- \left (c x - 1\right ) \left (c x + 1\right )}}{\left (a + b \operatorname {asin}{\left (c x \right )}\right )^{2}}\, dx \]

input
integrate((-c**2*x**2+1)**(1/2)/(a+b*asin(c*x))**2,x)
 
output
Integral(sqrt(-(c*x - 1)*(c*x + 1))/(a + b*asin(c*x))**2, x)
 
3.4.84.7 Maxima [F]

\[ \int \frac {\sqrt {1-c^2 x^2}}{(a+b \arcsin (c x))^2} \, dx=\int { \frac {\sqrt {-c^{2} x^{2} + 1}}{{\left (b \arcsin \left (c x\right ) + a\right )}^{2}} \,d x } \]

input
integrate((-c^2*x^2+1)^(1/2)/(a+b*arcsin(c*x))^2,x, algorithm="maxima")
 
output
(c^2*x^2 - 2*(b^2*c^2*arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1)) + a*b*c^2 
)*integrate(x/(b^2*arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1)) + a*b), x) - 
 1)/(b^2*c*arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1)) + a*b*c)
 
3.4.84.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 290 vs. \(2 (84) = 168\).

Time = 0.37 (sec) , antiderivative size = 290, normalized size of antiderivative = 3.37 \[ \int \frac {\sqrt {1-c^2 x^2}}{(a+b \arcsin (c x))^2} \, dx=\frac {2 \, b \arcsin \left (c x\right ) \cos \left (\frac {a}{b}\right ) \operatorname {Ci}\left (\frac {2 \, a}{b} + 2 \, \arcsin \left (c x\right )\right ) \sin \left (\frac {a}{b}\right )}{b^{3} c \arcsin \left (c x\right ) + a b^{2} c} - \frac {2 \, b \arcsin \left (c x\right ) \cos \left (\frac {a}{b}\right )^{2} \operatorname {Si}\left (\frac {2 \, a}{b} + 2 \, \arcsin \left (c x\right )\right )}{b^{3} c \arcsin \left (c x\right ) + a b^{2} c} + \frac {2 \, a \cos \left (\frac {a}{b}\right ) \operatorname {Ci}\left (\frac {2 \, a}{b} + 2 \, \arcsin \left (c x\right )\right ) \sin \left (\frac {a}{b}\right )}{b^{3} c \arcsin \left (c x\right ) + a b^{2} c} - \frac {2 \, a \cos \left (\frac {a}{b}\right )^{2} \operatorname {Si}\left (\frac {2 \, a}{b} + 2 \, \arcsin \left (c x\right )\right )}{b^{3} c \arcsin \left (c x\right ) + a b^{2} c} + \frac {b \arcsin \left (c x\right ) \operatorname {Si}\left (\frac {2 \, a}{b} + 2 \, \arcsin \left (c x\right )\right )}{b^{3} c \arcsin \left (c x\right ) + a b^{2} c} + \frac {{\left (c^{2} x^{2} - 1\right )} b}{b^{3} c \arcsin \left (c x\right ) + a b^{2} c} + \frac {a \operatorname {Si}\left (\frac {2 \, a}{b} + 2 \, \arcsin \left (c x\right )\right )}{b^{3} c \arcsin \left (c x\right ) + a b^{2} c} \]

input
integrate((-c^2*x^2+1)^(1/2)/(a+b*arcsin(c*x))^2,x, algorithm="giac")
 
output
2*b*arcsin(c*x)*cos(a/b)*cos_integral(2*a/b + 2*arcsin(c*x))*sin(a/b)/(b^3 
*c*arcsin(c*x) + a*b^2*c) - 2*b*arcsin(c*x)*cos(a/b)^2*sin_integral(2*a/b 
+ 2*arcsin(c*x))/(b^3*c*arcsin(c*x) + a*b^2*c) + 2*a*cos(a/b)*cos_integral 
(2*a/b + 2*arcsin(c*x))*sin(a/b)/(b^3*c*arcsin(c*x) + a*b^2*c) - 2*a*cos(a 
/b)^2*sin_integral(2*a/b + 2*arcsin(c*x))/(b^3*c*arcsin(c*x) + a*b^2*c) + 
b*arcsin(c*x)*sin_integral(2*a/b + 2*arcsin(c*x))/(b^3*c*arcsin(c*x) + a*b 
^2*c) + (c^2*x^2 - 1)*b/(b^3*c*arcsin(c*x) + a*b^2*c) + a*sin_integral(2*a 
/b + 2*arcsin(c*x))/(b^3*c*arcsin(c*x) + a*b^2*c)
 
3.4.84.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {1-c^2 x^2}}{(a+b \arcsin (c x))^2} \, dx=\int \frac {\sqrt {1-c^2\,x^2}}{{\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )}^2} \,d x \]

input
int((1 - c^2*x^2)^(1/2)/(a + b*asin(c*x))^2,x)
 
output
int((1 - c^2*x^2)^(1/2)/(a + b*asin(c*x))^2, x)